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Abstract

Most ecological studies use remote sensing to analyze broad-scale biodiversity

patterns, focusing mainly on taxonomic diversity in natural landscapes. One of

the most important effects of high levels of urbanization is species loss

(i.e., biotic homogenization). Therefore, cost-effective and more efficient methods

to monitor biological communities’ distribution are essential. This study explores

whether the Enhanced Vegetation Index (EVI) and the Normalized Difference

Received: 17 May 2022 Revised: 15 November 2022 Accepted: 22 November 2022

DOI: 10.1002/eap.2808

Ecological Applications. 2023;33:e2808. https://onlinelibrary.wiley.com/r/eap © 2023 The Ecological Society of America. 1 of 17
https://doi.org/10.1002/eap.2808

https://orcid.org/0000-0003-1600-2310
https://orcid.org/0000-0003-0415-2709
https://orcid.org/0000-0002-0686-143X
https://orcid.org/0000-0002-8358-0797
mailto:ybenedetti73@gmail.com
https://onlinelibrary.wiley.com/r/eap
https://doi.org/10.1002/eap.2808
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2808&domain=pdf&date_stamp=2023-02-09


Technology, Grant/Award Numbers:
TKP2020-IKA-12, TKP2020-NKA-16;
Ministerio de Ciencia e Innovaci�on,
Grant/Award Number: PID2019-
107423GA-I00; SRA State Research
Agency

Handling Editor: Nancy F. Glenn

Vegetation Index (NDVI) can predict multifaceted avian diversity, urban

tolerance, and specialization in urban landscapes. We sampled bird communities

among 15 European cities and extracted Landsat 30-meter resolution EVI and

NDVI values of the pixels within a 50-m buffer of bird sample points using

Google Earth Engine (32-day Landsat 8 Collection Tier 1). Mixed models were

used to find the best associations of EVI and NDVI, predicting multiple avian

diversity facets: Taxonomic diversity, functional diversity, phylogenetic diversity,

specialization levels, and urban tolerance. A total of 113 bird species across

15 cities from 10 different European countries were detected. EVI mean was the

best predictor for foraging substrate specialization. NDVI mean was the best pre-

dictor for most avian diversity facets: taxonomic diversity, functional richness

and evenness, phylogenetic diversity, phylogenetic species variability, community

evolutionary distinctiveness, urban tolerance, diet foraging behavior, and habitat

richness specialists. Finally, EVI and NDVI standard deviation were not the best

predictors for any avian diversity facets studied. Our findings expand previous

knowledge about EVI and NDVI as surrogates of avian diversity at a continental

scale. Considering the European Commission’s proposal for a Nature Restoration
Law calling for expanding green urban space areas by 2050, we propose NDVI as

a proxy of multiple facets of avian diversity to efficiently monitor bird community

responses to land use changes in the cities.
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INTRODUCTION

Worldwide urbanization is rising, and approximately 60%
of the world’s population is expected to live in cities by
2030 (United Nations, 2017). Urbanization is a significant
threat to biodiversity, modifying biotic and abiotic ecosys-
tem characteristics (Grimm et al., 2008) through fragmen-
tation or replacing natural habitats (Sklenicka, 2016;
Williams et al., 2009). At the same time, urbanization gen-
erates new habitats suitable for a few species capable of
adapting to novel urban environments (McKinney, 2002,
2006). Unsurprisingly then, taxonomic (Marzluff, 2001),
functional (Devictor et al., 2007), and phylogenetic
(Ib�añez-Álamo et al., 2016; Morelli et al., 2016; Sol et al.,
2014) diversity decreased in urban environments com-
pared with their rural or natural counterparts. More specif-
ically, along an urbanization gradient, species richness
generally decreases (e.g., Melles et al., 2003). However, it
may peak at intermediate levels of urbanization (Bat�ary
et al., 2018; Blair, 1996; Jokimäki & Suhonen, 1993;
Leveau & Leveau, 2005). Although even some urban areas
show increased taxonomic diversity (Blair, 1996), it usually
consists of the replacement of local native species, also
called “urban avoiders” (Blair, 1996), by increasingly

spreading non-natives (Devictor et al., 2008; McKinney,
2002, 2006), and the predominance of generalist species,
generally more tolerant to high urbanized areas (Devictor
et al., 2008). Consequently, urbanization leads to biotic
homogenization (McKinney, 2002, 2006).

Bird assemblages are affected by local resources and
how they use suitable habitats (Croci et al., 2008).
Therefore, local environmental factors better explain bird
species richness (BSR) and composition than regional and
landscape factors, suggesting that site-specific management
strategies can improve avian diversity in cities (Croci et al.,
2008; Evans et al., 2009). Managing green areas within
cities could increase avian diversity (Croci et al., 2008).
For example, there are a greater number of native bird
species, less urban-tolerant species, in those areas com-
posed predominantly of native vegetation (Blair, 1996).
Conversely, few species, principally non-native ones, more
urban tolerant, dominate areas at higher built-up land
cover levels (Blair, 1996). At intermediate levels of urbani-
zation, avian assemblages can be composed of native and
non-native species. Therefore, an important first step in
urban development planning is understanding factors
influencing avian diversity (Stagoll et al., 2012). Moreover,
to successfully carry out land management plans, it is
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necessary to quantify the relationship between avian diver-
sity and habitat features (Mcfarland et al., 2012).

The decline of biodiversity affects species richness
and functional richness, increasing taxonomic and func-
tional biotic homogenization (Ibarra et al., 2015). Indeed,
the biotic homogenization process substitutes specialists
with generalist species, both spatially and temporally
(McKinney, 2006; Sol et al., 2014). Specialist species
occupy narrower niches. For example, they exploit partic-
ular habitats and limited portions of available resources
(Clavel et al., 2011). In contrast, generalist species use a
wider range of habitats and greater diversity of available
resources (Ducatez et al., 2015; Irschick et al., 2005).
Thus, species responses to habitat loss would depend on
the degree of specialization (Webb, 2010), favoring those
with wider niche breadths to survive in more degraded
habitats and increasing the risk of extinction of those
with a high degree of specialization (Davies et al., 2004;
McKinney & Lockwood, 1999). Recently, Callaghan,
Benedetti, et al. (2020) highlighted a negative association
between avian species specialization and their urban tol-
erance. Thus, considering that biodiversity involves many
facets (Carmona et al., 2012), conservation ecologists
claimed to apply a more integrative approach to estimate
biodiversity by disentangling different facets of species
assemblages (Carmona et al., 2012; Zupan et al., 2014),
mainly in urbanized landscapes (Devictor et al., 2007;
Morelli, Benedetti, Ib�añez-Álamo, et al., 2021). The differ-
ent responses of taxonomic diversity, functional diversity,
and phylogenetic diversity to environmental gradients lead
to different patterns in their spatial distribution (Bässler
et al., 2016; Devictor et al., 2010; Tucker & Cadotte, 2013).
For these reasons, conserving different facets of biodiver-
sity, such as taxonomic, functional, and phylogenetic
diversity, including also, specialization and urban toler-
ance assessments, are relevant for a comprehensive under-
standing of biodiversity drivers (Dehling et al., 2014; Grass
et al., 2015), and applying more effective conservation
strategies (Brooks et al., 2006; Lee & Jetz, 2008).

Monitoring species distribution using traditional field
surveys is challenging and logistically expensive. Thus,
standardized evaluations of the environmental conditions
with an adequate spatial resolution (Seto et al., 2004).
In addition, species distribution surveys in large areas are
challenging for ecologists and fieldworkers since they
require high sampling effort (Palmer, 1995). Therefore,
developing newmethods of assessing species diversity using
environmental variables could easily provide more insights
into the anthropogenic and natural disturbances affecting
biodiversity (Rocchini et al., 2010, 2016). In recent years,
the constant availability of multispectral remote-sensed
imagery has led to the widespread use of imagery with a
growing resolution and quality (Huang et al., 2021).

The quality of images is adequate for the evaluation of vari-
ous vegetation aspects such as canopy phenology, seasonal
changes in the leaf area, and gross primary production (Liu
et al., 2011;Muraoka et al., 2013; Turner et al., 2005), as well
as the floristic composition, vegetation height, and struc-
ture, vitality and age (Lausch et al., 2016). So, the use of
remote sensing tools largely improved the ability to monitor
biodiversity and ecosystem functioning at large scales pro-
viding useful information on the species distribution, repro-
ductive fitness (Regos et al., 2021), and population
abundance (Arenas-Castro et al., 2019) when facing spatial
and temporal changes (Lausch et al., 2016). Among many
vegetation indices, Normalized Difference Vegetation
Index (NDVI hereafter) and Landsat-derived Enhanced
Vegetation Index (EVI hereafter) are the most commonly
used to obtain vegetation information (Huete, Didan,
Miura, & Rodriguez, 2002; Mildrexler et al., 2009; Peckham
et al., 2008). Many studies demonstrated the capacity of EVI
and NDVI global-based vegetation indices to track vegeta-
tion characteristics and changes at different spatial scales
(Dobson et al., 2015; Gonsamo, 2010; Nieto et al., 2015;
Turner et al., 2001) and across long time series (Dutrieux
et al., 2015; Pettorelli et al., 2005; Semeraro et al., 2019). Both
vegetation indices share many spectral-domain attributes.
For this reason, they are complementary in identifying vege-
tation changes and canopy biophysical parameters (Huete &
Justice, 1999; Semeraro et al., 2019). EVI and NDVI values
are calculated based on the visible red and near-infrared
spectral reflectance (top-of-atmosphere—TOA or surface
reflectance). Specifically, the NDVI value calculation uses
the visible red and near-infrared spectral reflectance from all
land surface types, including vegetated surfaces (Huete &
Justice, 1999). The index varies between−1 and 1, indicating
different vegetation levels from vegetation-free cover up to
high vegetation biomass (Pettorelli, 2013; Tucker, 1979).
Several studies showed that NDVI value is positively related
to the biomass of vegetation (Matsushita et al., 2007), vegeta-
tion structure (Caruso et al., 2017), as well as, the amount of
leaf chlorophyll (Lausch et al., 2016), and leaf area coverage
(Wang et al., 2005). NDVI is one of the most used
global-based vegetation index. NDVI is characterized by
removing the noise produced by ever-changing sun angles,
topography, clouds or shadow, and atmospheric conditions
(Huete, 1988; Zhengxing et al., 2003). EVI is an “optimized”
vegetation index from NDVI developed to reduce some
atmospheric conditions and canopy background noise and
is more receptive to canopy structural variations, including
leaf area index (LAI), canopy type, plant physiognomy, and
canopy architecture (Huete, Didan, Miura, & Rodriguez,
2002; Huete & Justice, 1999). Similarly to NDVI, EVI values
calculation uses spectral reflectance, either TOA or surface,
in the visible red and near-infrared spectra. However,
unlike NDVI, EVI uses the blue band for the atmospheric
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correction and constant soil factor (Liu & Huete, 2019).
For these reasons, EVI is demonstrated to be more reliable
in low and high vegetation cover and adjusts to soil influ-
ence, canopy background signals, and atmospheric effects
on vegetation index values (Gao et al., 2000; Liu &
Huete, 2019). Thus, many researchers have preferred the
EVI index in their studies (e.g., Boles et al., 2004; Nagler
et al., 2005; Soudani et al., 2006; Waring et al., 2006). How-
ever, both vegetation indices have different constraints and
do not provide direct measures of the vegetation attributes
but act as proxies (Son et al., 2014). Other studies focusing
on NDVI and EVI comparisons showed contrasting results
in their capacities to obtain information on the vegetation
attributes (Son et al., 2014). One commonly recognized
obstacle with NDVI is its lower sensitivity at high vegeta-
tion biomass (Huete, 1988; Zhengxing et al., 2003) and the
effects of atmospheric and background soil reflectance
(Huang et al., 2021; Huete & Justice, 1999). Conversely,
EVI surpasses these constraints, increasing the detection
accuracy in regions at high biomass (Semeraro et al., 2019).
However, EVI is more affected by the topography, becom-
ing a challenge in hilly terrains (Matsushita et al., 2007).

NDVI and EVI are the most common vegetation indices
used in ornithological studies (Bae et al., 2018; Bonthoux
et al., 2018; Cooper et al., 2020; Hobi et al., 2017; Leveau
et al., 2020; Pettorelli et al., 2011;Wu et al., 2013). Both vege-
tation indices have been documented as excellent proxies
for primary productivity (e.g., Box et al., 1989; Cramer
et al., 1999) and the spatiotemporal distribution of vegeta-
tion (Pettorelli et al., 2005). Because primary productivity
influences the diversity and distribution of species (Wright,
1983), EVI and NDVI were identified as good predictors of
avian diversity in several studies. Specifically, several
authors found a positive relationship between EVI and
NDVI with avian species richness in both natural (Bae et al.,
2018; Cooper et al., 2020; Hobi et al., 2017; Hurlbert &
Haskell, 2003; Mcfarland et al., 2012; St-Louis et al., 2009)
and urban areas (Bino et al., 2008; Callaghan, Major, et al.,
2020; Leveau, 2019; Leveau et al., 2018, 2020). Some studies
on urban areas found contrasting associations between
NDVI and avian diversity (Bae et al., 2018; Leveau et al.,
2020). For example, Bae et al., 2018, found a positive associa-
tion between NDVI and species richness, displaying a con-
cave curve. While for functional and phylogenetic diversity,
the association was negative and characterized by a convex
curve. These results (Hawkins, Porter, & Diniz-Filho,
2003) demonstrated that the productivity–diversity corre-
lation has not had a universal form (Hawkins, Porter, &
Diniz-Filho, 2003). In addition, most of the urban studies
were mainly conducted in single or few urbanized locali-
ties (e.g., cities, towns) (Argentina: Leveau et al., 2018,
2020; Leveau, 2019; Brazil: Souza et al., 2019; Jerusalem:
Bino et al., 2008; Taiwan: Lin et al., 2008), potentially

limiting the transferability of such results to different cities
at a national or continental scale. Therefore, more studies
on a larger geographical scale (e.g., Callaghan, Major,
et al., 2020) are needed to discover EVI or NDVI potential
in tracking multifaceted avian diversity changes in urban
areas.

The spectral heterogeneity hypothesis argued for a pos-
itive correlation between habitat heterogeneity and species
diversity (Palmer et al., 2002; Rocchini et al., 2010). It was
demonstrated in several taxa, for example, vascular plants
(Foody & Cutler, 2006; Gould, 2000; Levin et al., 2007),
lichens (Waser et al., 2004), ants (Lassau et al., 2005), birds
(Bino et al., 2008; St-Louis et al., 2009), and mammals
(Oindo & Skidmore, 2002). Accordingly, many studies
demonstrated a positive association between the spatial
heterogeneity of vegetation (assessed by EVI and NDVI
spatial standard deviation) with species richness (Bacaro
et al., 2011; Bergen et al., 2007; Coops et al., 2009; Culbert
et al., 2012; Price et al., 2013) by monitoring and quantify-
ing significant vegetation characteristics (e.g., change of
broadleaf vegetation LAI or the phenological heterogeneity
of vegetation layers) (Davi et al., 2006; Qiao et al., 2019).
However, many mechanisms can change these associa-
tions when focusing on different facets of avian diversity
or habitats (e.g., urban areas). Consequently, more studies
are essential to understand better the associations between
surrogates of habitat heterogeneity (as EVI or NDVI stan-
dard deviations) with each facet of avian diversity in cities.

Since each diversity component discloses different
attributes of avian communities, more efficient monitor-
ing across large regions in a short period should be essen-
tial to support urban avian diversity. Accordingly, more
specific vegetation indices as proxies for each facet of avian
diversity metrics can help to indicate potential vulnerabil-
ities of avian communities facing climatic and land uses
changes. Therefore, in this study, we investigated and
compared the capacity of EVI and NDVI (as most
common proxies of primary productivity and vegetation
heterogeneity proxies) to determine the best-fitted
surrogate of every single facet composing avian diversity
(e.g., taxonomic, functional, and phylogenetic diversity,
urban tolerance, and avian specialization) in 15 different
European cities. We hypothesized that increasing primary
productivity and vegetation heterogeneity should increase
levels of avian taxonomic, functional, and phylogenetic
diversity according to the (1) productivity-diversity rela-
tionship (Wright, 1983) and (2) habitat-heterogeneity
hypothesis (MacArthur & MacArthur, 1961). Regarding
avian specialization, we hypothesized that increasing the
cover of vegetation biomass (primary productivity) and
vegetation heterogeneity could be associated with a
higher number of avian species that are less urban toler-
ant and more specialized.
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METHODS

Bird data collection

Data on bird presence and abundance were collected dur-
ing the breeding season along a continent-wide latitudinal

gradient in 15 European cities (Figure 1; Appendix S1:
Table S1). The bird survey period was performed between
early April and late July 2018. The field surveys started by
considering the differences in the study areas’ seasons to
mitigate potential issues associated with avian detectability
(e.g., early April in southern Spain and the end or late May

F I GURE 1 Location of the 15 different European cities used in this study: Prague (Czech Republic); Tartu (Estonia);

Jyväskylä (Finland); Turku (Finland); Poitiers (France); Athens and Ioannina (Greece); Budapest (Hungary); Pesaro (Italy);

Groningen (Netherlands); Pozna�n and Zielona G�ora (Poland); Granada, Madrid, and Toledo (Spain). See detailed results in

Benedetti & Morelli (2022).
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in northern Finland) (Kéry et al., 2005). Local expert orni-
thologists performed avian surveys to reduce potential bias
due to different skills.

One observer (the same local expert ornithologists for
each city) surveyed the avian composition early morning
(from 6:00 to 10:00) only during good weather conditions
(no rain and heavy winds). Approximately one hundred
5-min single-visit point counts (hereafter referred to as
“sample site”) per city distributed evenly along an urban-
ization gradient. All birds, visually or acoustically identi-
fied to the species level, were recorded. More specifically,
the sample sites consisted of a fixed area with a 50-m
radius. Sample sites were located in urbanized areas and
were recorded with a GPS in decimal degrees (DD).
According to GPS technical specifications from the man-
ufacturer (Garmin), the horizontal GPS accuracy was
within ±5–10 m, and the vertical accuracy was within
±15–38 m under normal conditions. All sample sites
were distanced by at least 200 m, a standardized method
in ecology (Bibby et al., 1992). This survey was designed
to obtain data about the distribution and abundance of
diurnal songbirds (Bibby et al., 1992). Additionally, we
excluded the raptors, nocturnal species, and aerial feeders
(i.e., swallows and swifts) from the analysis because the
sample site method is inappropriate for estimating their
abundance.

EVI and NDVI estimation

We calculated the EVI and NDVI. EVI is an extension of
NDVI, which approximates vegetation and canopy struc-
ture with improved sensitivity in high biomass regions
(Huete, Didan, Miura, Rodriguez, Gao, & Ferreira, 2002;
Jiang et al., 2008). The EVI and NDVI values fluctuate
from −1 to 1, where positive values correspond to the
cover of vegetated areas, while negative ones are for
water bodies, snow, clouds, and non-vegetated surfaces
(Holben, 1986; Vermote, 2013). To calculate EVI and
NDVI, we used Google Earth Engine (Gorelick et al.,
2017) to conduct our analysis, using the USGS Landsat
8 Collection 1 Tier 1 imagery (see details in the Google
Earth Engine catalog here: https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_
RT_TOA). Landsat 8 provides 30-m resolution data, with
a temporal resolution of one image in ~16 days. Therefore,
2 or 3 images per month were obtained for each sample
site (i.e., bird survey). To overcome the potentially limited
number of images for a given sample site, we used scenes
from 2017, 2018, and 2019 (expanding 1 year to either side
of the bird surveys), averaging any potential interannual
variation in vegetation changes. This expanded time scale
was also necessary as we filtered for cloud cover on a

per-pixel basis, meaning that if only 1 year was used, some
pixels could potentially have no imagery for a given
month. We filtered the data using the BQA bit 4, filtering
out pixels associated with cloud cover—this is a quality
assessment variable provided by the USGS, associated with
the Landsat 8 imagery. We also removed pixels with low
cloud shadow confidence. After this filtering, we collapsed
the remaining scenes for each pixel by taking the median
EVI and NDVI at each pixel, minimizing the potential of
outliers in the imagery. For each sampling site (i.e., bird
survey), we calculated the mean and standard deviation
value of the pixels within a 50-m buffer (corresponding to
the bird survey 50-m sample site) separately for April,
May, June, and July (corresponding to the bird survey
period). We tested this robustness by calculating the mean
and standard deviation of the pixels with a 150-m buffer
but found that the values were strongly correlated with
the 50-m buffer values (Appendix S1: Figure S1).

Finally, using monthly EVI and NDVI values
(considering April to July period to match the bird sur-
vey period), we calculated the average (EVI mean and
NDVI mean) and standard deviation (EVI sd and NDVI sd).
As detailed above, these mean values are the median
pixel values within each buffer. EVI and NDVI mean
values were strongly correlated with monthly values of
EVI (Appendix S1: Figure S2) and NDVI (Appendix S1:
Figure S3).

Facets of avian diversity assessment

A bird community is the total list of bird species present
in each sample site. We assessed each bird community’s
different facets of avian diversity: taxonomic, functional,
and phylogenetic diversity (Appendix S1: Table S2).
The first facet corresponds to taxonomic diversity regard-
ing BSR (Magurran, 2004). The second facet includes
three metrics related to functional diversity: functional
richness (FRic), functional evenness (FEve), and func-
tional divergence (FDiv) (Villéger et al., 2008). All func-
tional diversity metrics were calculated through the “FD”
package in R (Laliberté et al., 2015; Laliberté & Legendre,
2010) by using the avian niche database comprising
73 different traits (Pearman et al., 2014) (Appendix S1:
Table S3). The third facet involves three metrics related
to phylogenetic diversity: phylogenetic diversity (PD)
(Faith, 1992), phylogenetic species variability (PSV)
(Helmus et al., 2007), and community evolutionary dis-
tinctiveness (CED). We built the phylogenetic tree with
the relationships among the species in each sample site,
using genetic data from a total of 6663 taxa (Jetz et al.,
2012), provided in BirdTree (https://birdtree.org/subsets/).
PD and PSV metrics were estimated using the “picante”
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package for R (Kembel et al., 2010). Finally, CED was
assessed to determine the mean ED score for each bird
community considering all species present (see details in
Benedetti & Morelli, 2022) in a community (sample site)
(Morelli et al., 2016; Tucker et al., 2016). We obtained the
species ED score (Isaac et al., 2007; Redding et al., 2008)
from the following online database: from https://www.
edgeofexistence.org/edge-lists/ (Zoological Society of
London, 2008).

Then, we calculated an urban tolerance mean (UTM)
for every community (i.e., sample site) as species gener-
ally show responses to urbanization along a continuum.
We used species-specific urban tolerance scores from
Callaghan, Benedetti, et al., 2020. This method uses eBird
citizen science data and VIIRS night-time lights to pro-
vide species-specific preferences for or against urbaniza-
tion (for more details, see Callaghan, Major, et al., 2020).
Then, we took the mean of the species-specific urban tol-
erance scores (UTM) across all species at that sample site
(Appendix S1: Table S2).

Finally, we assessed avian specialization richness for
each avian community (i.e., sample site). We used the avian
species-specific specialization index estimated by Morelli
et al., 2019 for different ecological traits: diet, foraging
behavior, foraging substrate, and habitat (see details in
Appendix S1: Table S3). The specialization richness in each
sample site is estimated by the number of bird species with
a specialization value equal to 1 (Benedetti et al., 2022;
Morelli et al., 2019; Morelli, Benedetti, Hanson, & Fuller,
2021), see more details in Benedetti & Morelli, 2022. Thus,
avian specialization richness types estimated were diet spe-
cialization richness (Diet), foraging behavior specialization
richness (Forb), foraging substrate specialization richness
(Forsub), and habitat specialization richness (Hab).

Statistical analyses

We explored EVI and NDVI values (mean and sd) associ-
ations with taxonomic, functional, and phylogenetic
diversity, specialization types, and UTM. These associa-
tions were examined using Generalized Linear Mixed
Models (GLMMs). Models were fitted by maximum likeli-
hood using the package “nlme” and “lme4” in R (Bates
et al., 2015; Pinheiro et al., 2019). Each diversity facet
(Taxonomic diversity: Species richness; Functional diver-
sity: Functional diversity, functional evenness, and func-
tional divergence; Phylogenetic diversity: Phylogenetic
diversity, phylogenetic species variability, and commu-
nity evolutionary distinctiveness; UTM; and four speciali-
zation types: Diet, foraging behavior, foraging substrate,
and habitat) (see detailed description in Appendix S1:
Table S2) was established as a response variable and was

modeled separately. EVI and NDVI (mean and sd) were
designated as predictors individually. They were modeled
separately (each predictor for each response variable)
since we aimed to evaluate the single capacity of EVI and
NDVI (mean and sd) as surrogates of each avian diversity
facet. EVI and NDVI mean showed a high level of collin-
earity (Appendix S1: Figure S3). The city was included as
a random factor in the models. Geographical coordinates
were not included as predictors, considering the redun-
dancy of using cities as a random factor.

The response variables based on count data (e.g., BSR
and all specialization richness types) were tested for
overdispersion by employing the “aods3” package in R
(Lesnoff & Lancelot, 2018). Therefore, a ratio between
the sum of squared Pearson residuals and the residual
degrees of freedom lower than one (<1) indicates no
overdispersion issues (Agresti, 1990). Then, BSR and each
type of specialization richness were modeled following a
Poisson distribution. The normality assumptions of
response variables based on continuous data (e.g., UTM,
phylogenetic and functional diversity facets) were tested
employing the “MASS” package (Venables & Ripley, 2002)
in R. To normalize data not following a normal distribu-
tion, we log-transformed using the “rcompanion” package
in R (Salvatore Mangiafico, 2021). Finally, the variables
were modeled following a Gaussian distribution (Box &
Cox, 1964).

The Akaike information criterion (AIC) was used to
determine the “best” model explaining variation in the
data of each significant model when exploring EVI or
NDVI predictors (Burnham & Anderson, 2002). The model
selection and multimodel inference were performed using
the package “AICcmodavg” in R (Mazerolle, 2016). The
model with the lowest AIC and greater Akaike informa-
tion criterion weighted (AICWt) is considered the best
model (Mazerolle, 2016). Thus, this study evaluated the
best proxies’ avian diversity facets among all EVI or NDVI
indices explored.

Finally, the goodness of fit of each model was assessed
by assessing the conditional R2 (which considers the vari-
ance by the fixed and random effects) and marginal R2

(which considers the variance by the fixed effects) using
the function “rsquared” from the package “piecewiseSEM”
(Lefcheck, 2016).

The correlation between predictors was performed
using the “corrgram” function in R (Wright, 2018) to pro-
duce a matrix correlogram including the correlation value
obtained by the Pearson correlation coefficient.

Confidence intervals for the significant variables selected
in the best model were calculated by theWald method using
the “MASS” package in R (Venables &Ripley, 2002).

All modeling procedures, statistical tests, and data
explorations were performed with R software v. 4.1.3
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(R Development Core Team, 2019) and considered results
statistically significant when the p-value was lower
than 0.05.

RESULTS

In this study, 1382 sample sites were surveyed in 15 differ-
ent European cities (Figure 1, Appendix S1: Table S1).
A total of 113 avian species (see details in Benedetti &
Morelli, 2022) and 31,760 individuals were recorded. The
mean of total BSR across all 1382 sample sites was 7.23
species (minimum: 1, maximum: 24 species). The EVI
mean values in 50-m buffers vary between 0.040 and
0.734, considering all sample sites. In contrast, the EVI sd
values fluctuate between 0.006 and 0.248. NDVI mean
values fluctuate between 0.048 and 0.684. At the same
time, the NDVI sd values vary from 0.007 to 0.292. Consid-
ering only significant predictors, the values of conditional
R2 vary from 0.540 (for NDVI mean as a predictor of phy-
logenetic diversity [PD]) to 0.155 (for NDVI sd as a predic-
tor of community evolutionary distinctiveness [CED]). The
values of marginal R2 ranged from 0.22 (for NDVI mean as
a predictor of urban tolerance [UTM]) to 0.004 (for EVI sd
and NDVI sd as predictors for habitat specialization rich-
ness [Hab]) (Appendix S1: Table S4).

EVI and NDVI as proxies of avian diversity

The number of species (BSR), functional richness (FRic),
community evolutionary distinctiveness (CED), and phy-
logenetic diversity (PD) values of avian communities
were positively associated with all indices investigated
(e.g., EVI mean, EVI sd, NDVI mean, and NDVI sd).
Conversely, phylogenetic species variability (PSV) was
negatively associated (Table 1, Figure 2, Appendix S1:
Figures S3–S6). In addition, functional divergence (FDiv)
was not related to any EVI and NDVI indices used in this
study, and functional evenness (FEve) was significantly
related only to EVI and NDVI mean (Table 1, Figure 2,
Appendix S1: Figures S3–S6). NDVI mean was the best
proxy for BSR, FRic, FEve, CED, PD, and PSV as it
carries between 99% and 67% of the cumulative model
weight and has the lowest AIC (Table 1, Figure 2,
Appendix S1: Figures S3–S6).

EVI and NDVI as proxies of avian urban
tolerance

The UTM values were negatively associated with all indi-
ces, EVI and NDVI (both mean and sd). NDVI mean is

the selected best model, as it carries 99% of the cumula-
tive model weight and has the lowest AIC score (Table 2,
Figure 2, Appendix S1: Figures S3–S6).

EVI and NDVI as proxies of avian
specialization

Bird assemblages characterized by a high number of diet
(Diet), Foraging behavior (Forb), and Habitat (Hab)
specialist species were positively associated with all indices
investigated (e.g., EVI mean, EVI standard deviation, NDVI
mean, and NDVI sd) (Table 3, Figure 2, Appendix S1:
Figures S3–S6). Those areas characterized by the greater
number of foraging substrate specialists (Forsub) were neg-
atively related to EVI, and NDVI mean. NDVI mean was
the best proxy for Diet, Forb, and Hab specialist species as it
carries between 77 and 55% of the cumulative model weight
and has the lowest AIC (Table 1, Figure 2, Appendix S1:
Figures S3–S6). Finally, both EVI mean was the selected
best model for Forsub, as it carries 69% of the cumulative
model weight and has the lowest AIC score (Table 3,
Figure 2, Appendix S1: Figures S3–S6).

DISCUSSION

Our analysis provides the first assessment investigating
the ability of Landsat-derived EVI and NDVI as proxies
of different facets of avian diversity (e.g., taxonomic,
functional, and phylogenetic diversity, urban tolerance,
and avian specialization) in urban landscapes across
15 European cities. We found that EVI mean as a surro-
gate of primary productivity was associated significantly
with most avian diversity facets. However, EVI was the
best predictor only for foraging substrate specialization.
Specifically, EVI mean was negatively correlated to the
number of bird species specialized in foraging substrate.
Indicating a lower number of birds specialized in a par-
ticular foraging substrate are likely found in areas charac-
terized by higher values of EVI mean. This finding could
indicate a lower availability of potential foraging sub-
strates (e.g., bare soil, artificial surfaces, and/or body
water characterized) at higher cover vegetation. Most pre-
vious studies focused on the association between EVI
(mean and standard deviation) and BSR (e.g., Callaghan,
Major, et al., 2020; Cooper et al., 2020; Farwell et al., 2020;
Hobi et al., 2017). Such studies were performed mainly in
forest and rural areas (e.g., grassland and farmland).
Instead, our findings are the first evidence that the EVI is
significantly associated with multiple facets of avian diver-
sity in urban areas and, most importantly, is the best pre-
dictor of foraging substrate specialization.
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On the other hand, NDVI mean was significantly
associated with most avian diversity facets. Specifically, it
was positively correlated with BSR, functional richness,

functional evenness, community evolutionary distinctive-
ness, phylogenetic diversity, and the number of diet and
habitat specialists in urbanized areas. However, NDVI

TAB L E 1 Results of fixed-effect parameters in the GLMMmodel performed in this study, accounting for variations in the following diversity

metrics: Bird species richness (BSR), Functional richness (FRic), Functional evenness (FEve), Functional divergence (FDiv), Community

evolutionary distinctiveness (CED), Phylogenetic diversity (PD), and Phylogenetic species variability (PSV), concerning the following predictors:

EVImean, EVI standard deviation (EVI sd), NDVImean, NDVI standard deviation (NDVI sd). Model = Individualmodels.

Model ES SE t/z p-value AIC Delta AIC AICWt

Response variable: Bird species richness

EVI mean 1.384 0.109 12.75 <0.001 3845.91 10.38 0.01

EVI sd 2.731 0.354 7.71 <0.001 3949.75 114.22 0

NDVI mean 1.481 0.113 13.10 <0.001 3835.53 0 0.99

NDVI sd 2.975 0.389 7.65 <0.001 3950.98 115.45 0

Response variable: Functional richness

EVI mean 1.454 0.238 6.110 <0.001 2142.16 4.74 0.09

EVI sd 3.891 0.840 4.630 <0.001 2157.56 20.15 0

NDVI mean 1.581 0.243 6.504 <0.001 2137.41 0 0.91

NDVI sd 4.544 0.928 4.894 <0.001 2155.12 17.7 0

Response variable: Functional evenness

EVI mean 0.437 0.052 8.458 <0.001 −598.88 5.86 0.05

EVI sd 0.459 0.177 2.587 0.0098 −537.29 67.45 0

NDVI mean 0.467 0.053 8.834 <0.001 −604.77 0 0.95

NDVI sd 0.306 0.197 1.558 0.1195 −533.07 71.67 0

Response variable: Functional divergence

EVI mean 0.007 0.004 1.648 0.100 −4767.79 0.45 0.25

EVI sd 0.017 0.014 1.202 0.230 −4766.59 1.65 0.14

NDVI mean 0.008 0.004 1.802 0.072 −4768.24 0 0.31

NDVI sd 0.028 0.016 1.731 0.0839 −4768.11 0.13 0.30

Response variable: Community evolutionary distinctiveness

EVI mean 0.073 0.006 12.815 <0.001 −4184.500 1.4 0.33

EVI sd 0.100 0.022 4.616 <0.001 −4055.203 130.7 0

NDVI mean 0.075 0.006 12.880 <0.001 −4185.899 0 0.67

NDVI sd 0.087 0.024 3.620 <0.001 −4047.140 138.8 0

Response variable: Phylogenetic diversity

EVI mean 2.318 0.248 9.340 <0.001 2217.973 4.28 0.11

EVI sd 5.243 0.895 5.861 <0.001 2267.243 53.55 0

NDVI mean 2.433 0.254 9.593 <0.001 2213.690 0 0.89

NDVI sd 5.738 0.990 5.796 <0.001 2267.969 54.28 0

Response variable: Phylogenetic species variability

EVI mean −0.328 0.026 −12.550 <0.001 −1603.509 6.94 0.03

EVI sd −0.459 0.098 −4.665 <0.001 −1480.491 129.95 0

NDVI mean −0.343 0.027 −12.877 <0.001 −1610.445 0 0.97

NDVI sd −0.391 0.110 −3.573 <0.001 −1471.652 138.79 0

Note: Each predictor was modeled separately for each response variable. The significant and selected model—according to the lowest AIC value and higher

AICWt—is evidenced in bold. Additionally, conditional R 2 (variance explained by fixed and random effects) and marginal R 2 (variance explained by the fixed
effects) assessed for each model are reported in Appendix S1: Table S4.
Abbreviations: AIC, Akaike information criterion; AICWt, Akaike information criterion weighted; ES, estimate; SE, standard error.
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mean was correlated negatively to phylogenetic species
variability, urban tolerance, and foraging substrate spe-
cialism. Simultaneously, except for foraging substrate
specialization, NDVI mean was the best predictor of all
avian diversity metrics explored in this study. Hence,
urban areas with high NDVI mean values were character-
ized by a greater number of bird species (Ib�añez-Álamo
et al., 2016), high functional richness, and phylogenetical
diversity (Morelli, Benedetti, Ib�añez-Álamo, et al., 2021),
and also a greater number of avian specialists. In agree-
ment, previous studies found higher species richness and
phylogenetic diversity associated with low-density urban
areas, which we can assume greater NDVI mean values
(Ib�añez-Álamo et al., 2016; Morelli et al., 2016; Morelli,
Benedetti, Ib�añez-Álamo, et al., 2021). Conversely, in areas
with high values of NDVI mean, avian assemblages were
barely correlated phylogenetically and with few urban

tolerant species and foraging substrate specialists.
Our results show that a greater vegetation cover supports
urban areas with avian assemblages taxonomically less
related and with a greater number of native species.
Therefore, greater NDVI mean values can identify urban
areas with lower avian biotic homogenization (Morelli,
Benedetti, Ib�añez-Álamo, et al., 2021). Accordingly, most
studies focused on NDVI as a proxy of avian diversity
found positive associations between NDVI and BSR and
functional diversity (Bailey et al., 2004; Gillespie, 2005;
Hurlbert & Haskell, 2003; Levin et al., 2007; Seto et al.,
2004). Leveau et al. (2020) found a negative correlation
between NDVI and community evolutionary distinctive-
ness in Argentine, contrasting our findings. Such discrep-
ancies could be associated with the sampling size
differences between both studies or the bird species com-
posing such avian assemblages. For example, the overall

F I GURE 2 Matrix representing the GLMM association types between avian diversity and community metrics and Landsat-derived

indices. In the columns, the following responses variables are: Bird species richness (BSR), Functional richness (FRic), Functional evenness

(FEve), Functional divergence (FDiv), Community evolutionary distinctiveness (CED), Phylogenetic diversity (PD), Phylogenetic species

variability (PSV), Urban Tolerance mean (UTM), Diet specialization richness (Diet), Foraging behavior specialization richness (Forb),

Foraging substrate specialization richness (Forsub), Habitat specialization richness (Hab). In the rows, the following predictive variables are:

EVI mean, EVI standard deviation (EVI sd), NDVI mean, and NDVI standard deviation (NDVI sd). Each predictive variable was assessed in

separate models. Blue squares represent positive and significant associations. Red squares represent negative and significant associations.

White squares represent non-significant associations. The selected best models—according to the lowest AIC and greater AICWt values—are

indicated with a white dot. See detailed results in Tables 1–3.

TAB L E 2 Results of fixed-effect parameters in the GLMM model performed in this study, accounting for variations in Urban Tolerance

mean (UTM), concerning the following predictors: EVI mean, EVI standard deviation (EVI sd), NDVI mean, NDVI standard deviation

(NDVI sd).

Model ES SE t/z p-value AIC Delta AIC AICWt

Response variable: Urban tolerance mean

EVI mean −4.380 0.221 −19.854 <0.001 3961.821 9.70 0.01

EVI sd −7.251 0.855 −8.479 <0.001 4237.844 285.72 0

NDVI mean −4.605 0.228 −20.176 <0.001 3952.123 0 0.99

NDVI sd −6.394 0.980 −6.524 <0.001 4265.989 313.87 0

Note: Model, Individual models. Each predictor was modeled separately for each response variable. The significant and selected model—according to the
lowest AIC value and higher AICWt—is evidenced in bold. Additionally, conditional R 2 (variance explained by fixed and random effects) and marginal R 2

(variance explained by the fixed effects) assessed for each model are reported in Appendix S1: Table S4.
Abbreviations: AIC, Akaike information criterion; AICWt, Akaike information criterion weighted; ES, estimate; SE, standard error.
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avian assemblages in European cities can be characterized
by higher community evolutionary distinctiveness than
those found in Argentine (Ib�añez-Álamo et al., 2016;
Morelli et al., 2016). These differences can be related to the
presence of Upupa epops in some urban areas, a species
characterized by a high evolutionary distinctiveness score.

Our findings indicate that the mean values of NDVI
and EVI are suitable as proxies for monitoring different
facets of avian diversity in urban areas. However, NDVI
mean was the best predictor for most avian diversity met-
rics. Considering that both vegetation indices are surro-
gates of primary productivity (Huete, Didan, Miura,
Rodriguez, Gao, & Ferreira, 2002), these findings are con-
sistent with the species-energy hypothesis (Wright, 1983).
Such a hypothesis claims that the species diversity of ver-
tebrates (including birds) and invertebrates should
increase with energy availability (Evans & Gaston, 2005;
Hawkins, Field, et al., 2003; Lennon et al., 2004). Accord-
ingly, our results show that areas at high productivity
levels (greater vegetation biomass), represented by high
EVI and NDVI values, support avian assemblages with a

high number of native species, more diverse functionally,
less related phylogenetically, and more distinctive spe-
cies. Therefore, in such areas, we can expect a greater
number of avian specialist species, particularly in diet
and foraging behavior.

Regarding vegetation heterogeneity, several studies
demonstrated the ability of EVI sd and NDVI sd to repre-
sent vegetation heterogeneity (Seto et al., 2004). Similar
to EVI and NDVI mean, our results showed that EVI sd
and NDVI sd were significantly and positively associated
with most avian diversity facets. Instead, they were nega-
tively correlated to phylogenetic species variability and
urban tolerance. We expected such results because het-
erogeneous environments provide a greater diversity of
microhabitats and niches potentially suitable as refugia,
substrate, and other resources for the organisms (Keppel
et al., 2011; Stein et al., 2014; Tews et al., 2004).
Nonetheless, EVI sd and NDVI sd were not the best pre-
dictors for any avian diversity facets studied since they
exhibited an overall lower performance than the other
predictors.

TAB L E 3 Results of fixed-effect parameters in the GLMM model performed in this study, accounting for variations in each category of

specialization richness: Diet (Diet), Foraging behavior (Forb), Foraging substrate (Forsub), and Habitat (Hab) concerning the following

predictors: EVI mean, EVI standard deviation (EVI sd), NDVI mean, NDVI standard deviation (NDVI sd).

Model ES SE t/z p-Value AIC Delta AIC AICWt

Response variable: Diet richness

EVI mean 0.857 0.180 4.750 <0.001 3823.02 0.46 0.44

EVI sd 2.276 0.610 3.735 <0.001 3831.9 9.34 0.01

NDVI mean 0.905 0.189 4.784 <0.001 3822.56 0 0.55

NDVI sd 2.405 0.688 3.498 <0.001 3833.59 11.03 0

Response variable: Foraging behavior richness

EVI mean 0.696 0.133 5.123 <0.001 4678.76 0.48 0.28

EVI sd 2.197 0.430 5.110 <0.001 4680.38 2.11 0.12

NDVI mean 0.733 0.140 5.248 <0.001 4678.28 0 0.35

NDVI sd 2.555 0.486 5.255 <0.001 4679.02 0.74 0.24

Response variable: Foraging substrate richness

EVI mean −0.694 0.182 −3.806 <0.001 3715.79 0 0.69

EVI sd −0.517 0.616 −0.840 0.4008 3729.63 13.84 0

NDVI mean −0.678 0.189 −3.595 <0.001 3717.42 1.63 0.31

NDVI sd 0.006 0.691 0.009 0.993 3730.34 14.55 0

Response variable: Habitat richness

EVI mean 1.424 0.294 4.844 <0.001 2356.12 2.41 0.23

EVI sd 3.358 0.880 3.815 <0.001 2365.31 11.59 0

NDVI mean 1.590 0.314 5.072 <0.001 2353.72 0 0.77

NDVI sd 3.817 1.001 3.795 <0.001 2365.5 11.79 0

Note: Model, Individual models. Each predictor was modeled separately for each response variable. The significant and selected model—according to the
lowest AIC value and higher AICWt—is evidenced in bold. Additionally, conditional R 2 (variance explained by fixed and random effects) and marginal R 2

(variance explained by the fixed effects) assessed for each model are reported in Appendix S1: Table S4.

Abbreviations: AIC, Akaike information criterion; AICWt, Akaike information criterion weighted; ES, estimate; SE, standard error.
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CONCLUDING REMARKS AND
PERSPECTIVES

Previous studies demonstrated that each satellite sensor
(e.g., Landsat, Sentinel, or Gaofen) provides different veg-
etation indices values. Such differences can affect the
accuracy of the assessment of the vegetation attributes
(Wu et al., 2020; Zhao et al., 2018). The search for the
“best” proxy should consider the trade-offs among
vegetation index effectiveness, economic costs, and spatio-
temporal resolution for each band and sensor type.
Therefore, further studies could apply this framework by
exploring other potential proxies of avian diversity metrics
by using spectral indices based on other bands such as
SWIR band (e.g., NDWI, Normalized Difference Water
Index) or linear band transformations (e.g., TCT, Tasseled
Caps Transformation), and by also examining different sat-
ellite sensors (e.g., Sentinel-2A, Sentinel-2B, WorldView-2).
Additionally, we encourage that upcoming studies should
expand the temporal monitoring scheme to detect changes
in avian assemblages of urban areas.

The World Cities Report 2020 (United Nations Human
Settlements Programme, 2022), jointly with the New Urban
Agenda (United Nations, 2017) and the European Biodiver-
sity Strategy for 2030 (EC, 2020), recognizes the value of
urban green areas in removing carbon from the atmo-
sphere and safeguarding biodiversity. Such programs call
for different measures to promote green space areas,
increasing environmental resilience in human settlements.
Accordingly, our results indicate that greater cover of green
areas can support different facets of urban avian diversity.
For this reason, efficient conservation strategies in cities
should be considered: (1) Maintaining different types of
green-area habitats, not only forests and urban parks
(Nguyen et al., 2020), but also larger urban greenspaces to
preserve connectivity in the city (Callaghan et al., 2018;
EC, 2020; Nguyen et al., 2020; United Nations, 2017); and
(2) Restoring vegetation cover to support avian communi-
ties confronting climate change (EC, 2020). Additionally,
we recommend long-term and broader spatial monitoring
of different avian diversity metrics in urban areas using
NDVI mean to detect temporal and spatial changes in
avian assemblages. Therefore, such approaches can help
to explore the potential vulnerabilities of bird assemblages
facing climatic and land-use changes and promote more
efficient landscape restoration and urban planning, congru-
ently with biodiversity conservation.

In summary, we tested the efficiency of remote sens-
ing measurements as proxies’ of multiple facets of avian
diversity using data from several European cities, consid-
ering that: (1) most articles focusing on vegetation indices
and avian diversity metrics are based on single-city stud-
ies; (2) assess proxies of avian diversity in urban areas is

essential given that the spectral indices can find different
technical limitations (e.g., higher reflectance from differ-
ent material types) if compared to natural or rural areas
(Xue & Su, 2017); and (3) several facets of avian diversity
were not previously assessed (e.g., phylogenetic related-
ness, urban tolerance, and different specialization traits
of avian assemblages) even though they can mirror
undetected biotic homogenization (Petchey & Gaston,
2006). Our findings showed that although all vegetation
indices explored in this study were significantly related to
most avian diversity facets, NDVI mean was the best
explanatory vegetation index for avian diversity in urban
areas.
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